
Lesson 1 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Introduction to Concurrent
Programming

• A motivating example

• Why concurrency?

• Basic terminology and abstractions

• Java threads

• Traces

Today’s menu

1

A Motivating Example

2

We illustrate the challenges introduced by concurrent programming on a simple
example: a counter modeled by a Java class

• First, we write a traditional, sequential version

• Then, we introduce concurrency and…run into trouble!

As simple as counting to two

3

Sequential counter

4

public class Counter {

private int counter = 0;

// increment counter by one

public void run() {

int cnt = counter;

counter = cnt + 1;

}

// current value of counter

public int counter() {

return counter;

}

}

public class SequentialCount {

public static

void main(String[] args) {

Counter counter = new Counter();

counter.run(); // increment once

counter.run(); // increment

twice

// print final value of counter

System.out.println(

counter.counter());

}

}

– What is printed by running: java SequentialCount?

– May the printed value change in different reruns?

Modeling sequential computation

public void run() {

int cnt = counter;

counter = cnt + 1;

}

counter.run(); // first call: steps 1-3

counter.run(); // second call: steps 4-6

6

Adding concurrency

Now, we revisit the example by introducing concurrency:

Each of the two calls to method run can be executed in parallel

• In Java, this is achieved by using threads

• Do not worry about the details of the syntax for now, we will explain it later

The idea is just that:

– There are two independent execution units (threads) t and u

– Each execution unit executes run on the same counter object

– We have no control over the order of execution of t and u

7

Concurrent counter

public class CCounter

extends Counter

implements Runnable

{

// threads

// will execute

// run()

}

public class ConcurrentCount {

public static void main(String[] args) {

CCounter counter = new CCounter();

// threads t and u, sharing counter

Thread t = new Thread(counter);

Thread u = new Thread(counter);

t.start(); // increment once

u.start(); // increment twice

try { // wait for t and u to terminate

t.join(); u.join();

} catch (InterruptedException e) {

System.out.println("Interrupted!");

} // print final value of counter

System.out.println(counter.counter());

} }

– What is printed by running: java ConcurrentCount?

– May the printed value change in different reruns?

$ javac Counter.java CCounter.java ConcurrentCount.java

$ java ConcurrentCount.java

2

$ java ConcurrentCount.java

2

...

$ java ConcurrentCount.java

1

$ java ConcurrentCount.java

2

What?!

The concurrent version of counter
occasionally prints 1 instead of the
expected 2

• It seems to do so unpredictably

Welcome to concurrent programming!

9

10

Why concurrency?

11

Why do we need concurrent programming in the first place?

• Abstraction:

• Separating different tasks, without worrying about when to execute
them (Ex: download files from two different websites)

• Responsiveness:

• Providing a responsive user interface, with different tasks executing
independently (Ex: browse the slides while downloading your email)

• Performance:

• Splitting complex tasks in multiple units, and assign each unit to a
different processor (Ex: compute all prime numbers up to 1 billion)

Reasons for using concurrency

12

Principles of concurrent programming

vs.

Principer för parallell programmering

Huh?

Concurrency vs. parallelism

13

We will mostly use concurrency and parallelism as synonyms

However, they refer to similar but different concepts:

• Concurrency: nondeterministic composition of independently executing units
(logical parallelism)

• Parallelism: efficient execution of fractions of a complex task on multiple processing units
(physical parallelism)

• You can have concurrency without physical parallelism: operating systems running on
single-processor single-core systems

• Parallelism is mainly about speeding up computations by taking advantage of redundant
hardware

Concurrency vs. parallelism

14

Ideal situation

Photo: Summer Olympics 2016, Sander van Ginkel.

Concurrency vs. parallelism

15

More common situation

Photos: World Cup Nordic ’07, Tomoyoshi Noguchi – Vasaloppet ’06, Steven Hale.

Concurrency vs. parallelism

16

Real world situation

Challenges:

– Concurrency: Everyone gets to do their laundry (fairness)
Machines are operated by at most one user (mutual exclusion)

– Parallelism: Distribute load evenly over machines/rooms (load balancing)

Solutions: schedules, locks, signs/indicators…

Photo: Daniel Mott 2009 Photo: Wolfgangus Mozart 2010

Concurrency vs. parallelism

17

The spectacular advance of computing in the last 60+ years has been driven by
Moore’s law (1965)

1975: The density of transistors in integrated circuits
doubles approximately every 2 years

Moore's law and its end (?)

18

Later updated:

Doubling every
18 months

(instead of 2 years)

Moore's Law in January 2017

19

21

22

23

Physical restrictions force to change from increasing processing speed to having multiple
processing having a major impact on the practice of programming:

– Before: CPU speed increases without significant architectural changes

• Concurrent programming was a niche skill (for operating systems, databases, high-
performance computing)

• Program as usual and wait for your program to run faster

– Now: CPU speed remains the same, but number of cores increases

• Concurrent programming is pervasive

• Program with concurrency in mind, otherwise your programs remain slow

– desktop PCs,

– smart phones,

– video-games consoles,

– embedded systems,

– the Raspberry Pi,

– cloud computing, …

Concurrency everywhere

24

Very different systems all require concurrent programming:

We have 𝑛 processors that can run in parallel

How much speedup can we achieve?

𝒔𝒑𝒆𝒆𝒅𝒖𝒑 =
𝒔𝒆𝒒𝒖𝒆𝒏𝒕𝒊𝒂𝒍 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆

𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆

Amdahl’s law shows that the impact of introducing parallelism is limited by the
fraction 𝑝 of a program that can be parallelized:

𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒔𝒑𝒆𝒆𝒅𝒖𝒑 =
𝟏

𝟏 − 𝒑 + 𝒑/𝒏

Amdahl's law: Concurrency is no free lunch

sequential part parallel part

25

𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒔𝒑𝒆𝒆𝒅𝒖𝒑 =
𝟏

𝟏 − 𝒑 + 𝒑/𝒏

With 𝑛=10 processors, how close can we get to a 10x speedup?

With 𝑛=100 processors, how close can we get to a 100x speedup?

26

Amdahl's law: Examples

Source: Communications of the ACM, Dec. 2017

Amdahl's law: Examples

27

50% parallelism:
Adding more than
16 processors is
useless

95% parallelism:
Speedup up to 4096
processors
(uselss to add more)

Basic terminology and
abstractions

28

A process is an independent unit of execution – the abstraction of a running
sequential program:

– identifier

– program counter (PC)

– memory space

The runtime/operating system schedules processes for execution on the
available processors:

Processes

suspend

29

The scheduler is the system unit in charge of setting process states:

Process states

Ready: ready to be executed, but not allocated to any CPU

Blocked: waiting for an event to happen

Running: running on some CPU

30

A thread is a lightweight process – an independent unit of execution in the same program
space:

• identifier

• program counter (PC)

• memory

• local memory, separate for each thread

• global memory, shared with other threads

In practice, the difference between processes and threads is fuzzy and implementation
dependent. In our course:

Processes: executing units that do not share memory (in Erlang)

Threads: executing units that share memory (in Java)

Threads

31

Shared memory models:

– communication by writing to shared
memory

– e.g., multi-core systems

Distributed memory models:

– communication by message passing

– e.g., distributed systems

Shared memory vs. message passing

32

Java threads

33

Creating Threads
• What does a thread need to do?

https://en.wikipedia.org/wiki/Process_state

constructor

start

join

Method

start() Start a thread by calling run() method

run() Entry point for a thread

join() Wait for a thread to end

isAlive() Checks if thread is still running or not

setName()

getName()

getPriority()

Extend Thread

Extend?

Implement Runnable
• Java does not support multiple inheritance

• If you need your class to inherit

Two ways to build multi-threaded programs in Java:

– inherit from class Thread, override method run

– implement interface Runnable, implement method run

public class Ccounter

extends Counter

implements Runnable

{

// thread's computation:

public void run() {

int cnt = counter;

counter = cnt + 1;

}

}

CCounter c = new CCounter();

Thread t = new Thread(c);

Thread u = new Thread(c);

t.start();

u.start();

Java threads

38

Cannot use
Thread class!

It inherits from
Counter

So,
can only use

second method

For a Thread object t:

– t.start(): mark the thread t ready
for execution

– Thread.sleep(n): block the
current thread for n milliseconds
(correct timing depends on JVM
implementation)

– t.join(): block the current thread
until t terminates

Resuming and suspending is done by the

JVM scheduler, outside the program’s

control

States of a Java thread

39

Shared vs. thread-local memory:

– Shared objects: the objects on
which the thread operates, and
all reachable objects

– Local memory: local variables,
and special thread-local
attributes

Threads proceed asynchronously, so they have to coordinate with other threads
accessing the same shared objects

Thread execution model

40

1: public class CCounter implements Runnable {

2: int counter = 0; // shared object state

3:

4: // thread's computation:

5: public void run() {

6: int cnt = counter;

7: counter = cnt + 1;

8: } }

One possible execution of the concurrent counter

42

1: public class CCounter implements Runnable {

2: int counter = 0; // shared object state

3:

4: // thread's computation:

5: public void run() {

6: int cnt = counter;

7: counter = cnt + 1;

8: } }

One alternative execution of the concurrent counter

44

Traces

45

The sequence of states gives an
execution trace of the concurrent
program

Traces

46

A trace is an abstraction of

concrete executions:

– atomic/linearized

– complete

– interleaved

Another trace
A different
interleaving

Trace abstractions

Atomic/linearized: The effects of each thread appear as if they
happened instantaneously, when the trace snapshot is
taken, in the thread’s sequential order

Complete: The trace includes all intermediate atomic states

Interleaved: The trace is an interleaving of each thread’s linear trace
(in particular, no simultaneity)

47

When convenient, we will use an abstract notation for multi-threaded applications, which is
similar to the pseudo-code used in Ben-Ari’s book but uses Java syntax

Each line of code includes exactly one instruction that can be executed atomically:

– atomic statement ≅ single read or write to global variable

– precise definition is tricky in Java, but we will learn to avoid pitfalls

Abstraction of concurrent programs

code

local memory

shared memory

48

49

	Slide 0
	Slide 1: Today’s menu
	Slide 2: A Motivating Example
	Slide 3: As simple as counting to two
	Slide 4: Sequential counter
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Why concurrency?
	Slide 12: Reasons for using concurrency
	Slide 13: Concurrency vs. parallelism
	Slide 14: Concurrency vs. parallelism
	Slide 15: Concurrency vs. parallelism
	Slide 16
	Slide 17
	Slide 18: Moore's law and its end (?)
	Slide 19: Moore's Law in January 2017
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Concurrency everywhere
	Slide 25: Amdahl's law: Concurrency is no free lunch
	Slide 26
	Slide 27: Amdahl's law: Examples
	Slide 28: Basic terminology and abstractions
	Slide 29: Processes
	Slide 30: Process states
	Slide 31: Threads
	Slide 32: Shared memory vs. message passing
	Slide 33: Java threads
	Slide 34: Creating Threads
	Slide 35: Extend Thread
	Slide 36: Extend?
	Slide 37: Implement Runnable
	Slide 38: Java threads
	Slide 39: States of a Java thread
	Slide 40: Thread execution model
	Slide 41: One possible execution of the concurrent counter
	Slide 42: One possible execution of the concurrent counter
	Slide 43: One possible execution of the concurrent counter
	Slide 44: One alternative execution of the concurrent counter
	Slide 45: Traces
	Slide 46: Traces
	Slide 47: Trace abstractions
	Slide 48: Abstraction of concurrent programs
	Slide 49

