Introduction to Concurrent
Programming

Lesson 1 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

UNIVERSITY OF
GOTHENBURG

345 o A a\ /* |I_
"_-\ " >

CHALMERS

UNIVERSITY OF TECHNOLOGY

ST,
é’:ij UNIVERSITY OF GOTHENBURG

Today’s menu

* A motivating example
 Why concurrency?
* Basic terminology and abstractions

e Java threads

* Traces

@) UNIVERSITY OF GOTHENBURG

i

A Motivating Example

2) CHALMERS (8§} UNIVERSITY OF GOTHENBURG

]
NNNNNNNNNNNNNNNNNNNNNN e
i

As simple as counting to two

We illustrate the challenges introduced by concurrent programming on a simple
example: a counter modeled by a Java class

* First, we write a traditional, sequential version

* Then, we introduce concurrency and...run into trouble!

Sequential counter

public class Counter ({
private int counter = 0;

// increment counter by one

public void run () {
int cnt = counter;
counter = cnt + 1;

}

// current value of counter
public int counter () {
return counter;

}

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

é’:ij UNIVERSITY OF GOTHENBURG

public class SequentialCount {
public static
void main (String[] args) {
Counter counter = new Counter ()
counter.run(),; // increment once
counter.run(); // increment
twice
// print final value of counter
System.out.println (
counter.counter()) ;

— What is printed by running: java SequentialCount?

— May the printed value change in different reruns?

ST,

é’, "5_35 UNIVERSITY OF GOTHENBURG

S ':

CHALMERS

UNIYERSITY QF TECHNOLOGY

Modeling sequential computation

5 public void run() {

6 int cnt = counter;
7 counter = cnt + 1;
8

counter.run(); // first call: steps 1-3
counter.run(); // second call: steps 4-6

LOCAL STATE OBIJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: O counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

S 1

S UNIVERSITY OF TECHNOLOGY

+) CHALMERS ®%)) UNIVERSITY OF GOTHENBURG

Adding concurrency

Now, we revisit the example by introducing concurrency:

Each of the two calls to method run can be executed in parallel

* |nJava, thisis achieved by using threads
Do not worry about the details of the syntax for now, we will explain it later

The idea is just that:
— There are two independent execution units (threads) t and u

— Each execution unit executes run on the same counter object
— We have no control over the order of execution of t and u

Concurrent counter

public class CCounter public class ConcurrentCount ({
extends Counter public static void main(String[] args) {
implements Runnable CCounter counter = new CCounter();
{ // threads t and u, sharing counter
// threads Thread t = new Thread (counter);
// will execute Thread u = new Thread (counter) ;
// run/() t.start(); // increment once
} u.start(); // increment twice
try { // wait for t and u to terminate
t.join(); u.join();

} catch (InterruptedException e) {
System.out.println ("Interrupted!");

} // print final value of counter

System.out.println (counter.counter())

bl

— What is printed by running: java ConcurrentCount?

— May the printed value change in different reruns?

-) CHALMERS (8§} UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY A =
i

What?!

javac Counter.java CCounter.java ConcurrentCount.java
java ConcurrentCount.java

java ConcurrentCount.java

N Uy N Uy Ur

The concurrent version of counter

occasionally prints 1 instead of the
java ConcurrentCount. java expected p)

é java ConcurrentCount.java
<

S

2

 |tseemsto do so unpredictably

Welcome to concurrent programming!

ST,

é’, "5_35 UNIVERSITY OF GOTHENBURG

o ':

CHALMERS

UNIYERSITY QF TECHNOLOGY

DOES IT
WORK?

(E

geek & poke

CONCURRENCY

{#%)) UNIVERSITY OF GOTHENBURG

Why concurrency?

efl UNIVERSITY OF GOTHENBURG

Reasons for using concurrency

Why do we need concurrent programming in the first place?

 Abstraction:

» Separating different tasks, without worrying about when to execute
them (Ex: download files from two different websites)

* Responsiveness:

* Providing a responsive user interface, with different tasks executing
independently (Ex: browse the slides while downloading your email)

* Performance:

e Splitting complex tasks in multiple units, and assign each unit to a
different processor (Ex: compute all prime numbers up to 1 billion)

--3j CHALMERS &%) UNIVERSITY OF GOTHENBURG

J
............................. P

Concurrency vs. parallelism

Principles of concurrent programming
VS.
Principer for parallell programmering

Huh?

i) CHALMERS i:;lj UNIVERSITY OF GOTHENBURG

Lo UNIYERSITY QF TECHNOLOGY

Concurrency vs. parallelism

We will mostly use concurrency and parallelism as synonyms

However, they refer to similar but different concepts:

* Concurrency: nondeterministic composition of independently executing units
(logical parallelism)

* Parallelism: efficient execution of fractions of a complex task on multiple processing units
(physical parallelism)

* You can have concurrency without physical parallelism: operating systems running on
single-processor single-core systems

* Parallelism is mainly about speeding up computations by taking advantage of redundant
hardware

ST,

e ey

CHALMERS { f);a UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY

Concurrency vs. parallelism

|deal situation

Photo: Summer Olympics 2016, Sander van Ginkel.

ST,

é’: "5_35 UNIVERSITY OF GOTHENBURG

S ':

CHALMERS

UNIYERSITY QF TECHNOLOGY

Photos: World Cup Nordic ‘07, Tomoyoshi Noguchi — Vasaloppet ‘06, Steven Hale.

CHALMERS g‘i..}g UNIVERSITY OF GOTHENBURG
Concurrency vs. parallelism
Real world situation
J | I-J‘,_l | '
; i »7Liﬁ el BRI
Y £ E 3)_)fj@lno.ocoﬂf
Photo: Daniel Mott 2009 Photo: Wolfgangus ozart 2010

Challenges:

— Concurrency: Everyone gets to do their laundry (fairness)
Machines are operated by at most one user (mutual exclusion)

— Parallelism: Distribute load evenly over machines/rooms (load balancing)

Solutions: schedules, locks, signs/indicators...

) CHALMERS | (84, yNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY i
i

Moore's l[aw and its end (?)

The spectacular advance of computing in the last 60+ years has been driven by
Moore’s law (1965)

1975: The density of transistors in integrated circuits
doubles approximately every 2 years

I StUttering [Chipintroduction
@ Transistors per chip, ‘000 @ Clock speed (max), MHz @ Thermal design power*, w dates, selected
Transistors bought per $, m Pentium 4 | | Xeon | |Core 2 Duo |

20 ’ T ’ .

/ — Later updated:
7/ 15 J 107

_/"/ 10 ‘H’clhl“]‘l D bI.
J ‘ oubling every

‘_¢r"'r 5 Pentium ‘

18 months

(instead of 2 years)

TRl el Y PEty I
200204 06 08 10 12 15

| PR 2 L S I F S (.] I e . S 7 S 5) L I T T L S TR e e K P I e X S T e e e S L I |
1970 75 80 85 90 95 2000 05 10 15
Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

@) UNIVERSITY OF GOTHENBURG

COMMUNICATIONS

Exponential Laws of
Computing Growth

Biasinyy 5l .
[Technology \" 8 ;7 72
yArtificiall 157
iIntelligences . &
Think Again’
Cell-Graphs -
," Deploying.SON
inthe Erterprise - 1o

b 3

Technology for. .
the Most Effective
Use’of Mankind

Aspiring to

e 1 Trillion

/—8\‘ . ; o
e . 095:92%00° transistors in 2030
O & ®)
o 5
= @ o® RibbonFET
o
@ :
5 Z PowerVia
B o® \
< High NA
=
. ¢ 2.5D/3D packaging
@
®
O e Intel internal analysis of Intel products.
Future projections based on products still in design.
® e Future transistor counts are projections and are inherently uncertain.

1970 1980 1990 2000 2010 2020 2030

intel

Opinion
* February 16, 2022

* Download a PDF version of this editorial

« Contact Intel PR

More Manufacturing News

{9 cHal MERS AR

TTRTTETTIT ATANTF o~ G—OTHENBURG

Executive Summary

* Intel has a rich history of foundational process innovations in pursuit of Moore’s Law.
* Advanced packaging gives architects and designers new tools in their pursuit of Moore’s Law.
* Intel has a full pipeline of research that gives us the confidence of maintaining Moore's Law.

* All considered, numerous options are available to designers and architects in their continued
mission to deliver Moore’s Law

By Dr. Ann Kelleher

Executive Vice President and General Manager of Technology
Development

 CHALMERS (8§} UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY

EUV Litho

Super
MIM Capacitor 1 ! l,

o |

First FINnFET
Intel

Intel 3
4 T

Hi-K Metal Gate ‘ JITTTTTTTT]

Intel
Stl_'ained TTTTTTTITT 7
Silicon
Intel
10nm
m ‘ TITTIIITT]

\
FRRnnnnnn

Intel
10nm
SuperFIN Denser design

T libraries

\
TRRRRRNNND
AUANNEANER

\
TRERERRNNR

RENRURRURR Transistor Increased
transistor
drive current

RANMRRANNE
TTTTTTITIT Intel

22nm

optimization
for performance

1

Intel

32nm)}M Metal stack Reduced via

BARARRARRN enhancements resistance

\

Intel
45nm

-

Intel

65nm

NRRRRRARNR
Increased
use of EUV

Intel

90nm

| L Enhanced
RABANNURNN / < FinFET

o Enhanced

HKMG

ERENERREND
Al

i_
i—
<
2
o
w
o
w
(@)
z
<
>
@
@)
(18
o
L
a

Enhanced
FinFET

Enhanced Strain

efl UNIVERSITY OF GOTHENBURG

e

CHALMERS

UNIYERSITY QF TECHNOLOGY

Concurrency everywhere

Physical restrictions force to change from increasing processing speed to having multiple

processing having a major impact on the practice of programming:

— Before: CPU speed increases without significant architectural changes
e Concurrent programming was a niche skill (for operating systems, databases, high-

performance computing)
* Program as usual and wait for your program to run faster
— Now: CPU speed remains the same, but number of cores increases

* Concurrent programming is pervasive
* Program with concurrency in mind, otherwise your programs remain slow

Very different systems all require concurrent programming:
— embedded systems,

— desktop PCs,
— smart phones, — the Raspberry Pi,
— cloud computing, ...

— video-games consoles,
L

“2y CHALMERS

S

'I UNIVERSITY OF GOTHENBURG

Hog® UMNIVERSITY OF TECHNOLOGY

Amdahl's law: Concurrency is no free lunch

We have n processors that can run in parallel
How much speedup can we achieve?

sequential execution time

speedup =
P P parallel execution time

Amdahl’s law shows that the impact of introducing parallelism is limited by the

fraction p of a program that can be parallelized:
1

(1-p)+p/n
~ N

sequential part parallel part

maximum speedup =

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

@) UNIVERSITY OF GOTHENBURG

Amdahl's law: Examples

1
(1-p)+p/n

maximum speedup =

With n=10 processors, how close can we get to a 10x speedup?

% SEQUENTIAL % PARALLEL MAX SPEEDUP

20% 80% 3.57
10% 90% 5.26
[1% 99% 9.17

With n=100 processors, how close can we get to a 100x speedup?

% SEQUENTIAL % PARALLEL MAX SPEEDUP

20% 80% 4.81
10% 90% 9.17
1% 99% 50.25

Ay

CHALMERS () UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY

Amdahl's law: Examples

Amdahl’'s Law
20 = e e e e e e e e e E— —
i
- /// \
6 P o g N~ 95% parallelism:
g [] s 75% \ Speedup up to 4096
14 / —.— 90%
/ — Gui processors
12 / (uselss to add more)
= /
S d
8 10 f—==gr—p——=— 7—————’———“—_—;.‘..—:——--—"—'—"—'—"—'—'——"—‘—
. o -
50% parallelism: 2. // Pl
. i
Adding more than § |#
. 6 y B
16 processors is /17
7
useless 4 2y ey on Chmmtea —/.//__——.—'._."—"—“_—__—_,’_—..—...—-rr-‘nrrﬂ mmmmmmmmm FEEERSTEEE CEEEE OTETR EATEE ST wwwew ey
2
0
L o~ ~r @© [{=} N 5 (o] © r @ [{e} N g @® [{e]
i o [{e] N n ﬁ N 3 (=7} (=7} (o] [{e] o
NP g R eE 25 B
(32] [{e]
Number of processors -

Source: Communications of the ACM, Dec. 2017

2) CHALMERS (8§} UNIVERSITY OF GOTHENBURG

NNNNNNNNNNNNNNNNNNNNNN 2 s
T

Basic terminology and
abstractions

ST,
ij UNIVERSITY OF GOTHENBURG

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

Processes

A process is an independent unit of execution — the abstraction of a running
sequential program:

— identifier
— program counter (PC)
— memory space

The runtime/operating system schedules processes for execution on the
available processors:

CPU; running process Ps CPUs running process Py

suspend

scheduler

Process P, 1s waiting fe—

Process states

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

&5

j UNIVERSITY OF GOTHENBURG

The scheduler is the system unit in charge of setting process states:

Ready:

ready to be executed, but not allocated to any CPU

Blocked: waiting for an event to happen

Running:

running on some CPU

blocked

event l

NEW —p-

ready

resume

suspend

wait

running .
© = terminate

4%y CHALMERS

UNIYERSITY QF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Threads

A thread is a lightweight process —an independent unit of execution in the same program
space:

* identifier @ed memory
* program counter (PC) /' \

°* memory Thread T3 2o Thread T,
* |ocal memory, separate for each thread I I

* global memory, shared with other threads

17’s local memory | |7;,’s local memory

In practice, the difference between processes and threads is fuzzy and implementation
dependent. In our course:

Processes: executing units that do not share memory (in Erlang)
Threads: executing units that share memory (in Java)

) CHALMERS g ;

s j UNIVERSITY OF GOTHENBURG
Shared memory vs. message passmg

Shared memory models: Distributed memory models:
— communication by writing to shared — communication by message passing
memory — e.g., distributed systems

— e.g., multi-core systems

Thread T4| -.- |Thread T, Process P-| Process P,

message

il CHALMERS g;.,,}{; UNIVERSITY OF GOTHENBURG
re I

Java threads

. COF;I'IUCtOF B
Creating Threads
join

e What does a thread need to do?

Main Memory

start() Start a thread by calling run() method

run() Entry point for a thread

join() Wait for a thread to end

isAlive() Checks if thread is still running or not

setName() Swapped out and waiting Swapped out and blocked
getName()

getPriority() Page file / swap space

https://en.wikipedia.org/wiki/Process_state

{®%)) UNIVERSITY OF GOTHENBURG

Extend Thread

class MyThread extends Thread

1
public void run()
1

System.out.println("concurrent thread started running..");

classMyThreadDemo

1

public static void main(String args[])

!
MyThread mt = new MyThread();

mt.start();

Extend?

Hierarchy: Animals

* Animal

2M,)) UNIVERSITY OF GOTHENBURG

=)

* Mammal
* Canine
* Dog
« Wolf
* Feline
+ Cat
* Fish
* Tuna
* Shark
* Reptile
* Crocodile
* lguana

Object - Bank Account

» Accounts have certain data and operations
— Regardless of whether checking, savings, etc.

+ Data

— account number
— balance
— owner

* Operations
— open
— close
— get balance
— deposit
— withdraw

Ay

Kinds of Bank Accounts

* Account

— Checking
* Monthly fees
* Minimum balance.

— Savings
* Interest rate
« Each type shares some data and operations
of "account", and has some data and
operations of i1ts own.

Advanced C++ Programming 15

CHALMERS

UNIYERSITY QF TECHNOLOGY

2M,)) UNIVERSITY OF GOTHENBURG

Implement Runnable

* Java does not support multiple inheritance
* If you need your class to inherit

class MyThread implements Runnable

I
L

public void run()

r
L

System.out.println{"concurrent thread started running..");

class MyThreadDemo

I
L

public static void main(String args[])

r
L

MyThread mt = new MyThread();
Thread £t = new Thread({mt);

t.start();

4%y CHALMERS

UNIYERSITY QF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Java threads

Cannot use
Two ways to build multi-threaded programs in Java: Thread class!
— inherit from class Thread, override method run o
It inherits from
— implement interface Runnable, implement method run Counter
So,
public class Ccounter can only use
extends Counter eT C = new CCounter () ; second method
implements Runnable
{ Thread t = new Thread(c);
// thread's computation: Thread u = new Thread (c);
public void run() {
int cnt = Counter; t.Start();
counter = cnt + 1; u.start () ;

States of a Java thread

blocked/
waiting sleep()
join()
eveml resume
ready running

Y

terminate

.
......
'''''''

new; start() Suspend

Resuming and suspending is done by the
JVM scheduler, outside the program’s
control

-'i‘ 'F'\'-
i
S

CHALMERS

UNIYERSITY QF TECHNOLOGY

&5

j UNIVERSITY OF GOTHENBURG

Fora Thread object t:

— t.start ():markthe thread t ready
for execution

— Thread.sleep (n): block the
current thread for n milliseconds
(correct timing depends on JVM
implementation)

— t.join () : block the current thread
until t terminates

2 ""‘"_ CHALMERS

‘.'.':- EEEEEEEEEEEEEEEEEEEEEEEEE

& 5 UNIVERSITY OF GOTHENBURG

Thread execution model

. Shared vs. thread-local memory:
@red Obj@ — Shared objects: the objects on
/ \ which the thread operates, and
thread t; | ... [thread t, all reachable objects
I I — Local memory: local variables,
and special thread-local

t1’s local memory | t,,’s local memory

attributes

Threads proceed asynchronously, so they have to coordinate with other threads
accessing the same shared objects

; 1’.""‘5;'-1}

~) CHALMERS ng UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY

One possible execution of the concurrent counter

. public class CCounter implements Runnable {
int counter = 0; // shared object state

// thread's computation:
public void run() {

O J o O W IN Pk

int cnt = counter;
counter = cnt + 1;
1) # t’S LOCAL u’S LOCAL SHARED

I pce:6centy: L | pcy:6centy: L | counter: 0
2 pce: 7Tenty: O pcy: 6 cnty: L | counter: 0
3 pci:8cnti: 0 pc,: 6 cnt,: L | counter: 1
4 done pc,: 6 cnt,: L | counter: 1
5 done pc.: 7 cnty: 1 counter: 1
6 done pc,: 8 cnty: 1 counter: 2
7 done done counter: 2

i -11"-7!!:'{-1}

"53 UNIVERSITY OF GOTHENBURG

One alternative execution of the concurrent counter

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

. public class CCounter implements Runnable ({
int counter = 0; // shared object state

// thread's computation:
public void run() {

int cnt = counter;
counter = cnt + 1;
by # t’S LOCAL u’S LOCAL SHARED

I pce:6centy: L | pey:6centy: L | counter: 0
2 pce:7enti: 0 pc,: 6 cnty: L | counter: 0
3 pcy:7ente: O pcy: 7 cnt,: 0 counter: 0
4 pce:Tente: 0 pc,: 8 cnt,: 0 counter: 1
5 pce:8centi: 0 done counter: 1
6 done done counter: 1

®%)) UNIVERSITY OF GOTHENBURG

Traces

Traces
t’S LOCAL u'S LOCAL SHARED
1 pce:6ente: L | pey:6centy: L | counter: 0O
2 pce:Tente: 0 pc,: 6 cnty: L | counter: 0
3 pce:Tcente: 0 | pey:7enty: 0 | counter: 0
4 pce:Tente: 0 | pe,:8cent,: 0 counter: 1
5 pce:8centy: 0 done counter: 1
6 done done counter: 1

The sequence of states gives an
execution trace of the concurrent

program

g
g

CHALMERS ﬂ;} UNIVERSITY OF GOTHENBURG

UNIYERSITY QF TECHNOLOGY A =
i

A trace is an abstraction of
concrete executions:
— atomic/linearized

_ Complete Another trace
A different
— interleaved interleaving
t’S LOCAL u’S LOCAL SHARED
I pce:6centy: L | pcy:6¢cnty: L | counter: 0
2 pci:7cente: 0 pcy: 6 cnty: L counter: O
3 pce:8centy: 0 pcu: 6 cnty: L counter: 1
4 done pc,: 6 cnt,: L | counter: 1
5 done pcy: 7 cnty: 1 counter: 1
6 done pcy: 8 cnty: 1 counter: 2
7 done done counter: 2

g
B ruini)
e o

CHALMERS ﬂ?‘j UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY 2 :
s

Trace abstractions

cnt = counter counter = ¢cnt + 1
thread t __f_ _ _ e
; cnt = cQunter ; counter = cht } 1
thread u [L L
counter ? 0. ; x1 X A
trace states: bt 5 3 45 6

Atomic/linearized: The effects of each thread appear as if they
happened instantaneously, when the trace snapshot is
taken, in the thread’s sequential order

Complete: The trace includes all intermediate atomic states

Interleaved: The trace is an interleaving of each thread’s linear trace
(in particular, no simultaneity)

+) CHALMERS #)) UNIVERSITY OF GOTHENBURG

Abstraction of concurrent programs

When convenient, we will use an abstract notation for multi-threaded applications, which is
similar to the pseudo-code used in Ben-Ari’s book but uses Java syntax

int counter = 0;< shared memory
thread t thread u
int cnt; int cnt; < local memory
1 ¢cnt = counter; cnt = counter; 1
2 counter = ¢cnt + 1; counter = cnt + 1; 2
code

Each line of code includes exactly one instruction that can be executed atomically:
— atomic statement = single read or write to global variable

— precise definition is tricky in Java, but we will learn to avoid pitfalls

ST

{#%)) UNIVERSITY OF GOTHENBURG

Y CHALMERS

UNIYERSITY QF TECHNOLOGY

© 2016—2019 Carlo A. Furia, Sandro Stucki

@O0

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

	Slide 0
	Slide 1: Today’s menu
	Slide 2: A Motivating Example
	Slide 3: As simple as counting to two
	Slide 4: Sequential counter
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Why concurrency?
	Slide 12: Reasons for using concurrency
	Slide 13: Concurrency vs. parallelism
	Slide 14: Concurrency vs. parallelism
	Slide 15: Concurrency vs. parallelism
	Slide 16
	Slide 17
	Slide 18: Moore's law and its end (?)
	Slide 19: Moore's Law in January 2017
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Concurrency everywhere
	Slide 25: Amdahl's law: Concurrency is no free lunch
	Slide 26
	Slide 27: Amdahl's law: Examples
	Slide 28: Basic terminology and abstractions
	Slide 29: Processes
	Slide 30: Process states
	Slide 31: Threads
	Slide 32: Shared memory vs. message passing
	Slide 33: Java threads
	Slide 34: Creating Threads
	Slide 35: Extend Thread
	Slide 36: Extend?
	Slide 37: Implement Runnable
	Slide 38: Java threads
	Slide 39: States of a Java thread
	Slide 40: Thread execution model
	Slide 41: One possible execution of the concurrent counter
	Slide 42: One possible execution of the concurrent counter
	Slide 43: One possible execution of the concurrent counter
	Slide 44: One alternative execution of the concurrent counter
	Slide 45: Traces
	Slide 46: Traces
	Slide 47: Trace abstractions
	Slide 48: Abstraction of concurrent programs
	Slide 49

